High precision isotope ratio measurements of Sr and Nd at the nanogram level using the Phoenix TIMS with next generation Faraday detectors

Zenon Palacz Isotopx Limited

34th IGC presentation 2958

34th IGC presentation 2958

What are the parameters required for high precision measurements of small samples? (on Faraday collectors)

- High Sensitivity
 - Instrument sensitivity
 - Use of activators
- Low noise
 - Close to theoretical Johnson noise
 - Baseline stability
- Gain stability between detectors
 - Required for static analyses
- Multidynamic measurements
 - Eliminates gain and efficiencies
 - But can it be used on small samples?

How quiet are Xact amplifier/resistor boards

How quiet are Xact amplifier/resistor boards

Noise comparison between 1e¹¹ and 1T resistors

Xact

How fast are Xact resistors (1e¹¹ ohm)?

Isotopx

1T baseline in 4 seconds

Excellence in mass spectrometry

Isotopx

Gain stability 5ppm over 1 month <u>No</u>drift.

34th IGC presentation 2958

Day averages

Reduced scatter shows subtle <u>coherent</u> trends.

Measured on factory floor with no environmental temperature control

Sr dynamic precision 3ppm reproducibility (5volt ion beam)

Isotopx

Static precision 5ppm no gain corrections between analyses (5 volt ion beam)

How small a sample of Nd can be measured on Faradays

- Nd+ ion atom efficiency is about 2.5% (triple filament)
- NdO+ is higher than this.

How small an ion beam can we measure with good precision and accuracy? 50mv on 1e¹¹, 10mv on 1T

	¹⁴² Nd (amps)	¹⁴² Nd (mv)	¹⁴³ Nd/ ¹⁴⁴ Nd	%1se	¹⁴⁵ Nd/ ¹⁴⁴ Nd	%1se	¹⁴² Nd/ ¹⁴⁴ Nd	%1se		
1E+11	7.1E-12	706	0.512095	0.0003	0.348/02	0.0003	1.141827	0.0005		
	4.9E-12	485	0.512096	0.0004	0.345395	0.0004	1.141819	0.0006		
	3.0E-12	296	0.512082	0.0008	0.348399	0.0008	1.141837	0.0012		
	1.1E-12	105	0.512113	0.0016	0 348371	0.0020	1.141793	0.0019		
	4.9E-13	49	0.512057	0.0028	J.348383	0.0030	1.141822	0.0042		
	1.1E-13	11	0.512261	0.0106	0.348341	0.0135	1.143178	0.0139		
	4.9E-14	5	0.511754	0.0191	0.348499	0.0340	1.142667	0.0265		
	3.6E-14	4	0.512215	0.0257	0.348698	0.0274	1.142779	0.0221		
	¹⁴² Nd	¹⁴² Nd								
	(amps)	(mv)	¹⁴³ Nd/ ¹⁴⁴ Nd	%1 s e	¹⁴⁵ Nd/ ¹⁴⁴ Nd	%1se	¹⁴² Nd/ ¹⁴⁴ Nd	%1se		
1T	6.88E-12	688	0.512121	0.0003	0.348419	0.0003	1.141855	0.0005		
	4.98E-12	498	0.512127	0 0003	0.348421	0.0003	1.141861	0.0005		
	2.94E-12	294	0.512117	0.0006	0.348415	0.0006	1.141837	0.0007		
	9.67E-13	97	0.512169	0.0010	0.348432	0.0017	1.141870	0.0013		
	5.16E-13	52	0.512116	0.0023	0.348425	0.0022	1.141833	0.0018		
	1.26E-13	13	0.512106	0.0042	0.348400	0.0050	1.141863	0.0045		
	4.83E-14	5	0.512418	0.0083	0.348734	0.0123	1.141554	0.0105		

Errors expand below 1e⁻¹³A

10.5% ion/atom efficiency <20ppm reproducibility 300mv ¹⁴²Nd¹⁶O

2ng NdO 1T resistor data											
	¹⁴² Nd/ ¹⁴⁴ Nd	%1se	¹⁴³ Nd/ ¹⁴⁴ Nd	%1se	¹⁴⁵ Nd/ ¹⁴⁴ Nd	%1se	¹⁴⁸ Nd/ ¹⁴⁴ Nd	%1se	¹⁴² Nd ¹ ⁵O amps	Minules	ion/atom efficiency
1	1.1418 8	0.0008	0.512085	0.0006	0.348413	0.0006	0.241589	0.0012	3.3E-12	152	9.0%
2	1.14182	0.0008	0.512099	0.0008	0.348420	0.0009	0.241589	0.0015	2.9E-12	187	9.5%
3	1.141816	0.0007	0.512103	0.0007	0.348419	0.0007	0.241594	0.0010	3.1E-12	206	11.4%
4	1.141764	0.0010	0.512085	0.0007	0.348409	0.0006	0.241603	0.0013	3.1E-12	207	11.5%
5	1.141838	0.0010	0.512080	0.0007	0.348406	0.0006	0.241590	0.0015	3.1E-12	229	12.6%
6	1.141776	0.0010	0.512093	0.0007	0.348428	0.0006	0.241598	0.0015	3.1E-12	206	11.5%
7	1.141789	00009	0.512091	0.0007	0.348423	0.0006	0.241597	0.0014	3.2E-12	206	11.5%
8	1.141773	0.0011	0.512078	0.0007	0.348412	0.0007	0.241607	0.0016	3.1E-12	187	10.1%
9	1.141818	0.0009	0.512097	0.0007	0.348419	0.0006	0.241593	0.0013	3.2E-12	206	11.6%
10	1.141762	0.0014	0.512084	0.0009	0.348417	0.0008	0.241587	0.0014	3.2E-12	103	5.8%
11	1.141838	0.0007	0.512109	0.0006	0.348410	0.0006	0.241598	0.0011	3.0E-12	204	11.0%
Mean	1.141801	0.0009	0.512091	0.0007	0.348416	0.0007	0.241595	0.0013	3.1E-12	190	10.5%
1SD	0.000029	0.0002	0.000010	0.0001	0.000006	0.0001	0.000006	0.0002	1.1E-13	35	2%
1RSD	0.0025%		0.0019%		0.0018%		0.0026%				

2ng Nd measured as oxide at 300mv ¹⁴²Nd¹⁶O

Total evaporation measurements

- Widely used in nuclear applications to overcome mass fractionation by taking the average isotopic composition of the whole evaporation process.
- Baselines , peak centring and focussing at the start of the measurement prior to filament current ramping
- All above must remain stable during the evaporation.
- Used for small Sr in this application
- Potential benefit for micro-drilled samples, ice cores?

50ng Sr ion beam profile 7v for nearly 2 hours Efficiency 3.5% (No focussing or peak centring)

Excellence in mass spectrometry

Isotopx

⁸⁶Sr/⁸⁸Sr (summed) 50ng NBS 987

Excellence in mass spectrometry

Isotopx

⁸⁷Sr/⁸⁶Sr (summed)

1ng Sr 3volts ⁸⁸Sr for 150 minutes Efficiency= 13%

Excellence in mass spectrometry

Isotopx

Total evaporation measurements of NBS 987 <1ng

	Total Evaporation NBS 987					
	100pg	200pg	500pg	1ng		
	0.710244	0.710320	0.710249	0.710266		
	0.710255	0.710279	0.710263	0.710262		
	0.710285	0.710269	0.710265	0.710274		
	0.710242	0.710222	0.710264	0.710278		
	0.710256	0.710298	0.710273	0.710253		
	0.710320	0.710229	0.710253	0.710265		
	0.710299	0.710250	0.710249	0.710257		
	0.710229		0.710249	0.710273		
	0.710285		0.710272	0.710254		
	0.710303		0.710268	0.710258		
		•	•	·		
mean	0.710272	0.710267	0.710261	0.710264		
1SD	0.000031	0.000036	0.000010	0.000009		
1RSD (PPM)	43	50	14	12		

Ion/Atom detection efficiency for Sr with TaCl activator on rhenium filament

Conclusions

- Sub nanogram isotope ratio measurements of Sr can be easily made using total evaporation analyses.
- NdO measurements at the nanogram level produce 20ppm reproducible ¹⁴³Nd/¹⁴⁴Nd
- 1T resistors are 1.5 to 2 times less noisy than 1e11 depending on integration time.
- 1e11 ohm and 1T ohm resistors produce analytically similar data with ion beams >50mv.
- 1T resistors show analytical advantage below 10mv. No benefit to Sr and Nd, Probable benefit for small sample Os, Pb and U isotopes.
- Static Isotope ratio reproducibilities of 5ppm are now possible with new amplifier boards in a temperature controlled environment. (no need for dynamic amplifiers)
- Boards are upgradeable on Sector 54, IsoProbe-T and IsoProbe-P instruments.

Thank you for your attention!

34th IGC presentation 2958