Filtering
Product
Type
Applications
Other
-
Introducing SIRIX
The new standard in high performance IRMS Imagine if…You could achieve better than 10 ppm precision for 48 CO2 / 44 CO2, within 100 minutes In recent years measurement of isotopologues or “clumped isotopes” has become widespread. Focus is on the analysis of CO2 where isotopes of mass m/z 44, 45, 46, 47, 48 and…
-
Precise measurement of trace actinides
using Phoenix TIMSZenon Palacz, Shaun Yardley, Matt Hockley, Steve Guilfoyle What is this study about? The performance characteristics of an Isotopx Phoenix equipped with 10 conversion dynode ion counters with newly developed MICX electronics is evaluated. This design allows the simultaneous measurement of actinides at unit mass spacing. The ion counters are independently movable allowing the study…
-
ATONA: world class amplifier technology
What if you had Faraday amplifiers that gave you the low noise level of 1e13 Ω amplifiers, yet you could also put huge ion beams on them – without consequence? What if these amplifiers had almost zero resistor lag or Tau decay time? What if these amplifiers were so stable that gain calibrations could almost…
-
NGX Helium Plus
The new standard in high precision helium isotope analysis The analysis of helium isotopes can be challenging. Your instrument needs the resolution, the sensitivity, and the abundance sensitivity to allow you to have confidence in your measurement. You need the same result, day after day. And what if you want to analyse other noble gases…
-
Optimising ATONA integration times for beam intensity
Application note AN22_01 Matt Hockley, Isotopx Ltd, Dalton House, Dalton Way, Middlewich, Cheshire, CW10 0HU, UK. How do I select an integration time to optimise my measurement precision? Introduction When measuring an ion beam, there are two sources of uncertainty on the measurement: uncertainty due to amplifier noise, and uncertainty due to the shot noise…
-
Measurement of clumped CO2 isotopologues using
SIRIX stable isotope ratio mass spectrometerApplication note AN22_02 Isotopx Ltd, Dalton House, Dalton Way, Middlewich, Cheshire, CW10 0HU, UK. How can SIRIX be used to improve CO2 measurement? Introduction The objective of CO2 isotopologue studies is to accurately and precisely measure small differences (Δ 47) in the abundance of m/z 47 (13C18O16O) relative to m/z 44 12C16O16O. Small changes in…
-
Introducing ATONA for TIMS – A paradigm shift in signal amplifier technology
Technical Note T30182 Isotopx Ltd, Dalton House, Dalton Way, Middlewich, Cheshire, CW10 0HU, UK. Introduction Over the past 20 years improvements in resistor amplification technology have slowed. The marginal gains that have been made are largely offset by the practical limitations. The newly developed ATONA (aA to nA) amplification technology from Isotopx has eliminated the…
-
Ultra Low Noise and Baseline Drift Zeptona Faraday Detector
Technical Note 2102 Matt Hockley, Zenon Palacz, Shaun Yardley and Tony Jones, Isotopx Ltd, Middlewich, Cheshire, UK. Introduction The recently developed Isotopx ATONA® Faraday amplifier represents the benchmark in ion beam signal measurement using Faraday collectors1. A further advance; the Zeptona detector system is presented in this technical note. The Zeptona system comprises a custom…
-
Isotopic analysis of sub-nanogram Nd standards using new ATONA amplifiers
Andrew A. Reinhard 1, Jeremy D. Inglis1, Robert E. Steiner1, Stephen LaMont1, Matthew G. Jackson2 1Nuclear and Radiochemistry, Los Alamos National Laboratory 2Department of Earth Science, University of California Santa Barbara Motivation In the last several years new amplifier technologies have been released for thermal ionization mass spectrometers (TIMS) including the ATONA amplifiers produced by…
-
Ultra Low Noise Multiple Isotopx Ion Counting (IIC) and Faraday Detectors on Phoenix TIMS
Technical Note 2101 Matt Hockley, Zenon Palacz, Shaun Yardley and Tony Jones, Isotopx Ltd, Middlewich, Cheshire, UK. Introduction When measuring very small ion signals (<10,000cps), in sub picogram samples of actinides, ion counting detectors are necessary due to their low noise compared to that of a Faraday detector. Ion counters however, still have a nonzero…